Package: StatRank 0.0.6
StatRank: Statistical Rank Aggregation: Inference, Evaluation, and Visualization
A set of methods to implement Generalized Method of Moments and Maximal Likelihood methods for Random Utility Models. These methods are meant to provide inference on rank comparison data. These methods accept full, partial, and pairwise rankings, and provides methods to break down full or partial rankings into their pairwise components. Please see Generalized Method-of-Moments for Rank Aggregation from NIPS 2013 for a description of some of our methods.
Authors:
StatRank_0.0.6.tar.gz
StatRank_0.0.6.zip(r-4.5)StatRank_0.0.6.zip(r-4.4)StatRank_0.0.6.zip(r-4.3)
StatRank_0.0.6.tgz(r-4.4-any)StatRank_0.0.6.tgz(r-4.3-any)
StatRank_0.0.6.tar.gz(r-4.5-noble)StatRank_0.0.6.tar.gz(r-4.4-noble)
StatRank_0.0.6.tgz(r-4.4-emscripten)StatRank_0.0.6.tgz(r-4.3-emscripten)
StatRank.pdf |StatRank.html✨
StatRank/json (API)
# Install 'StatRank' in R: |
install.packages('StatRank', repos = c('https://hosseinazari.r-universe.dev', 'https://cloud.r-project.org')) |
- Data.Election1 - A1 Election Data
- Data.Election6 - A6 Election Data
- Data.Election9 - A9 Election Data
- Data.Nascar - Nascar Data
- Data.NascarTrimmed - Trimmed Nascar Data
- Data.Test - Tiny test dataset
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 9 years agofrom:0a24708e6f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:Breakingconvert.vector.to.listEstimation.GRUM.MLEEstimation.Normal.GMMEstimation.PL.GMMEstimation.PL.MLEEstimation.RUM.MLEEstimation.RUM.MultiType.MLEEstimation.RUM.NonparametricEstimation.Zemel.MLEEvaluation.AveragePrecisionEvaluation.KendallTauEvaluation.KLEvaluation.LocationofWinnerEvaluation.MSEEvaluation.NDCGEvaluation.Precision.at.kEvaluation.TVDExpo.MultiType.Pairwise.ProbGenerate.NPRUM.DataGenerate.RUM.DataGenerate.RUM.ParametersGenerate.Zemel.ParametersGenerate.Zemel.Ranks.PairsgenerateCgenerateC.modelgenerateC.model.NonparametricKLLikelihood.NonparametricLikelihood.PLLikelihood.RUMLikelihood.RUM.MultitypeLikelihood.ZemelMSENormal.MultiType.Pairwise.ProbNormal.Pairwise.ProbPL.Pairwise.Probscores.to.orderscrambleturn_matrix_into_tableTVDVisualization.EmpiricalVisualization.MultiTypeVisualization.Pairwise.ProbabilitiesVisualization.RUMplotsZemel.Pairwise.Prob
Dependencies:clicolorspaceevdfansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcpprlangscalestibbletruncdistutf8vctrsviridisLitewithr